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Abstract
Negative feedback is common in biological processes and can increase a system’s stability to
internal and external perturbations. But at the molecular level, control loops always involve
signaling steps with finite rates for random births and deaths of individual molecules. By
developing mathematical tools that merge control and information theory with physical chemistry
we show that seemingly mild constraints on these rates place severe limits on the ability to
suppress molecular fluctuations. Specifically, the minimum standard deviation in abundances
decreases with the quartic root of the number of signaling events, making it extraordinarily
expensive to increase accuracy. Our results are formulated in terms of experimental observables,
and existing data show that cells use brute force when noise suppression is essential, e.g.
transcribing regulatory genes 10,000s of times per cell cycle. The theory challenges conventional
beliefs about biochemical accuracy and presents an approach to rigorously analyze poorly
characterized biological systems.

Life in the cell is a complex battle between randomizing and correcting statistical forces:
births and deaths of individual molecules create spontaneous fluctuations in
abundances1,2,3,4 – noise – while many control circuits have evolved to eliminate, tolerate
or exploit the noise5,6,7,8. The net outcome is difficult to predict because each control
circuit in turn consists of probabilistic chemical reactions. For example, negative feedback
loops can compensate for changes in abundances by adjusting the rates of synthesis or
degradation7, but such adjustments are only certain to suppress noise if the individual
deviations immediately and surely affect the rates5. Even the simplest transcriptional
autorepression by contrast involves gene activation, transcription and translation,
introducing intermediate probabilistic events that can randomize or destabilize control.
Negative feedback may thus either suppress or amplify fluctuations depending on the exact
mechanisms, reaction steps and parameters9 – details that are difficult to characterize at the
single cell level and that differ greatly from system to system. This raises a fundamental
question: to what extent is biological noise inevitable and to what extent can it be
controlled? Could evolution simply favor networks – however elaborate or ingeniously
designed – that enable cells to homeostatically suppress any disadvantageous noise, or does
the nature of the mechanisms impose inherent constraints that cannot be overcome?
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Control is limited by information loss
To address this question without oversimplifying or guessing at the complexity of cells, we
consider a chemical species X1 that affects the production of a second species X2, which in
turn indirectly controls the production of X1 via an arbitrarily complicated reaction network
with any number of components, nonlinear reaction rates, or spatial effects (Fig. 1). For
generality, we only specify three of the chemical events of the larger network:

(1)

where x1 and x2 are numbers of molecules per cell, the birth and death rates are probabilistic
reaction intensities, τ1 is the average lifetime of X1 molecules, f is a specified rate function,
and the unspecified control network allows u to be dynamically and arbitrarily set by the full
time history of X2 values. Death events for X2 are omitted because the results we derive
rigorously hold for all types and rates of X2 degradation mechanisms, as long as they do not
depend on X1. The generality of u and f allows X1 to represent many different biological
species: an mRNA with X2 as the corresponding protein, a protein with X2 as either its own
mRNA or an mRNA downstream in the control pathway, an enzyme with X2 as a product,
or a self-replicating DNA with X2 as a replication control molecule.

The arbitrary birth rate u represents a hypothetical ‘control demon’ that knows everything
about past and present values of x2 and uses this information to minimize the variance in x1.
This corresponds to an optimal reaction network capable of any type of time-integration,
frequency-based control, spatially extended dynamics, or other exotic actions. The sole
restriction is that the control system depends on x1 only via reaction (iii), an example of a
common chemical signaling relay where a concentration determines a rate. Because
individual X2 birth events are probabilistic, some information about X1 is then inevitably
and irrecoverably lost and the current value of X1 cannot be perfectly inferred from the X2
time-series. Specifically, the number of X2 birth events in a short time period is on average
proportional to f(x1), with a statistical uncertainty that depends on the average number of
events. If x1 remained constant, the uncertainty could be arbitrarily reduced by integrating
over a longer time, but because it keeps changing randomly on a time scale set by τ1,
integration can only help so much. The problem is thus equivalent to determining the
strength of a weak light source by counting photons: each photon emission is probabilistic,
and if the light waxes and wanes, counts from the past carry little information about the
current strength. The otherwise omniscient control demon thus cannot know the exact state
of the component it is trying to control.

We then quantify how finite signaling rates restrict noise suppression, without linearizing or
otherwise approximating the control systems, by analytically deriving a feedback-invariant
upper limit on the mutual information10 between X1 and X2 – an information-theoretic
entropic measure for how much knowing one variable reduces uncertainty about another –
and derive lower bounds on variances in terms of this limit. We use a continuous stochastic
differential equation for the dynamics of species X1, an approximation that makes it easier to
extend the results to more contexts and processes, but keep the signaling and control
processes discrete. After considerable dust has settled, this theory (summarized in Box 1 and
detailed in the Supplementary Information, SI) allows us to calculate fundamental lower
bounds on variances.
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Box 1

Outline of underlying theory

Statistical uncertainties and dependencies are often measured by variances and
correlation coefficients, but both uncertainty and dependence can also be defined purely
in terms of probabilities (pi), without considering the actual states of the system. The
Shannon entropy H (X) = Σpilogpi measures inherent uncertainty rather than how
different the outcomes are, and the mutual information between random variables I (X1;
X2) = H (X1)–H (X1|X2) measures how much knowing one variable reduces entropic
uncertainty in another, regardless of how their outcomes may correlate10,27. Despite the
fundamental differences between these measures, however, there are several points of
contact that can be used to predict limits on stochastic behavior.

First, because imperfectly estimating the state of a system fundamentally restricts the
ability to control it (SI), there is a hard bound on variances whenever there is incomplete
mutual information between the signal X2 and the controlled variable X1. We quantify
the bound by means of Pinsker’s nonanticipatory epsilon entropy28, a rarely utilized
information-theoretic concept that exploits the fact that the transmission of information in
a feedback system must occur in real time. This shows (SI) how an upper bound on the
mutual information I (X1; X2) – i.e. a limited Shannon capacity in the channel from X1 to
X2 – imposes a lower bound on the mean squared estimation error E (X1X̂1)2, where the
‘estimator’ X̂1 is an arbitrary function of the discrete signal X2 time series and the X1
dynamics at equilibrium is described by a stochastic differential equation. Since the
capacity of the molecular channels we consider is not increased by feedback, this results
in a lower limit in the variance of X1, in terms of the channel capacity C, that holds for

arbitrary feedback control laws: .

Second, the Shannon capacity is potentially unlimited when information is sent over

point process ‘Poisson channels’29, , as in stochastic reaction networks where
a controlled variable affects the rate of a probabilistic signaling event. However, infinite
capacity requires that the rate f (x1) is unrestricted and thus that X1 is unrestricted –
contrary to the purpose of control. Here we consider two types of restrictions. First, if the
rate has an upper limit fmax it follows30 that C=K<f> where K= log(fmax/<f>). The
channel capacity then equals the average intensity multiplied by the natural logarithm of
the effective dynamic range fmax/<f>, and the noise bound follows

. This allows for any nonlinear function f (x1) but, for specific
functions, restricting the variance in x1 can further reduce the capacity. For example, we
analytically show that the capacity of the generic Poisson channel subject to mean and

variance constraints follows . Having less noise in x1will reduce the
variance in f and thereby make it harder to transmit the information that is fundamentally
required to reduce noise. Combining this expression for the channel capacity with the
feedback limit above reveals hard limits beyond which no improvements can be made:
any further reduction in the variance would require a higher mutual information, which is
impossible to achieve without instead increasing the variance. When f is linear in x1 this
produces the result in Eq. (2). Analogous calculations allow us to derive capacity and
noise results when f is a Hill function, or for processes with bursts, extrinsic noise,
parallel channels, and cascades (SI). Finite channel capacities are the only fundamental
constraints considered here, so at infinite capacity perfect noise suppression is possible
by construction.
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Noise limited by 4th root of signal rate
When the rate of making X2 is proportional to X1, f =αx1, for example when X1 is a
template or enzyme producing X2, the hard lower bound on the (squared) relative standard
deviation created by the loss of information follows:

(2)

where <…> denotes population averages and N1 = <u>τ1 = <x1> and N2 = α<x1>τ1 are the
numbers of birth events of X1 and X2 made on average during time τ1. Thus no control
network can significantly reduce noise when the signal X2 is made less frequently than the
controlled component. When the signal is made more frequently than the controlled
component, the minimal relative standard deviation (square root of Eq. (2)) at most
decreases with the quartic root of the number of signal birth events. Reducing the standard
deviation of X1 10-fold thus requires that the signal X2 is made at least 10,000 times more
frequently. This makes it hard to achieve high precision, and practically impossible to
achieve extreme precision, even for the slowest changing X1 in the cell where the signals X2
may be faster in comparison.

Systems with nonlinear amplification before the infrequent signaling step are also subject to
bounds. For arbitrary nonlinear encoding where f is an arbitrary functional of the whole x1
time history – corresponding to a second control demon between X1 and X2 – the quartic
root limit turns into a type of square root limit (Box 1 and SI). However, gene regulatory
functions typically saturate at full activation or leak at full repression, as the generalized Hill

function  with K1<K2. Here X1 may be an activator or repressor, and
X2 an mRNA encoding either X1 or a downstream protein. Without linearizing f or
restricting the control demon, an extension of the methods above (SI) reveals similar quartic
root bounds as in Eq. (2), with the difference that N2 is replaced by γN2,max where γ is on
the order of one in a wide range of biologically relevant parameters (SI), and N2,max= vτ1 =
N2 v/<f>. Cells can then produce much fewer signal molecules without reducing the
information transfer, depending on the maximal rate increase v/<f>, but the quartic root
effect still strongly dampens the impact on the noise limit. If X2 is an mRNA, N2,max is also
limited because transcription events tend to be relatively rare even for fully expressed genes.

Many biological systems show much greater fluctuations due to upstream sources of noise,
or sudden ‘bursts’ of synthesis4,11,12. If X1 molecules are made or degraded in bursts (size
b1, averaged over births and deaths) there is much more noise to suppress, and if signal
molecules X2 are produced in bursts (size b2) each independent burst only counts as a single
signaling event in terms of the Shannon information transfer, and:

(3)

The effective average number of molecules or events is thus reduced by the size of the burst,
which can increase the noise limits greatly in many biological systems. The effect of slower
upstream fluctuations in turn depends on their time-scales, how they affect the system, and
whether or not the control system can monitor the source of such noise directly. If noise in
the X1 birth rate is extrinsic to X1 but not directly accessible by the controller, the predicted
noise suppression limits can follow similar quartic root principles for both fast and slow
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extrinsic noise, while for intermediate time-scales the power-law is between 3/8 and ¼ (SI,
and Fig 2).

Information losses in cascades
Signaling in the cell typically involves numerous components that change in probabilistic
events with finite rates. Information about upstream states is then progressively lost at each
step much like a game of ‘broken telephone’ where messages are imperfectly whispered
from person to person. If each signaling component Xi+1 decays exponentially and is
produced at rate αixi, an extension of the theory (SI) shows that if a control demon monitors
Xn+1 and controls X1, N2 above is replaced by

(4)

where Nj is the average number of birth events (or bursts, as in Eq. (3)) of species j during
time period τ1. Information transfer in cascades is thus limited by the components made in
the lowest numbers, and because the total average number of birth events over the n steps
obeys Ntot≥n2Neff, a five-step linear cascade requires at least 25 times more birth events to
maintain the same capacity to suppress noise as a single-step mechanism. This effect of
information loss is superficially similar to noise propagation where variation in inputs cause
variation in outputs, but though both effects reflect the probabilistic nature of infrequent
reactions, the governing principles are very different. In fact, the mechanisms for preventing
noise propagation – such as time-averaging or kinetic robustness to upstream changes6 –
cause a greater loss of information, while mechanisms that minimize information losses –
such as all-or-nothing nonlinear effects13 – instead amplify noise. Large variation in
signaling intermediates is thus not necessarily a sign of reduced precision but could reflect
strategies to minimize information loss, which in turn allows tighter control of downstream
components.

The rapid loss of information in cascades also suggests another trade-off: effective control
requires a combination of appropriately nonlinear responses and small information losses,
but nonlinear amplification in turn requires multiple chemical reactions with a loss of
information at each step. The actual bounds may thus be much more restrictive than
predicted above, where assuming Hill functions or arbitrary control networks conceals this
trade-off. One of the greatest challenges in the cell may be to generate appropriately
nonlinear reaction rates without losing too much information along the way.

Parallel signal and control systems can instead improve noise suppression, since each
signaling pathway contributes independent information about the upstream state. However,
for a given total number of signaling events, parallel control cannot possibly reduce noise
below the limits above: the loss of information is determined only by the total frequency of
the signaling events, not their physical nature. The analyses above in fact implicitly allow
for arbitrarily parallel control with f interpreted as the total rate of making control molecules
affected directly by X1 (SI).

Systems selected for noise suppression
The results above paint a grim picture for suppression of molecular noise. At first glance this
seems contradicted by a wealth of biological counterexamples: molecules are often present
in low numbers, signaling cascades where one component affects the rates of another are
ubiquitous, and yet many processes are extremely precise. How is this possible if the limits
apply universally? First, the transmission of chemical information is not fundamentally
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limited by the number of molecules present at any given time, but by the number of
chemical events integrated over the time-scale of control (i.e., by N2 rather than <x2>
above). Second, most processes that have been studied quantitatively in single cells do in
fact show large variation, and the anecdotal view of cells as microscopic-yet-precise largely
comes from a few central processes where cells can afford a very high number of chemical
events at each step, often using post-translational signaling cascades. Just like gravity places
energetic and mechanistic constraints on flight but does not confine all organisms to the
surface of the earth, the rapid loss of information in chemical networks places hard
constraints on molecular control circuits but does not make any level of precision inherently
impossible.

It can also be tempting to dismiss physical constraints simply because life seems fine despite
them. For example, many cellular processes operate with a great deal of stochastic variation,
and central pathways seem able to achieve sufficiently high precision. But such arguments
are almost circular. The existence of flight does not make gravity irrelevant, nor do winged
creatures simply fly sufficiently well. The challenges are instead to understand the trade-offs
involved: what performances are selectively advantageous given the associated costs, and
how small fitness differences are selectively relevant?

To illustrate the biological consequences of imperfect signaling we consider systems that
must suppress noise for survival and must relay signals through gene expression, where
chemical information is lost due to infrequent activation, transcription, and translation. The
best characterized examples are the homeostatic copy number control mechanisms of
bacterial plasmids that reduce the risk of plasmid loss at cell division. These have been
described much like the example above with X1 as plasmids and X2 as plasmid-expressed
inhibitors5, except that plasmids self-replicate with rate u(t)x1 and therefore are bound by
the quartic root limit for all values of N1 and N2 (SI, Fig. 2). To identify the mechanistic
constraints when X1 production is directly inhibited by X2, rather than by a control demon
that is infinitely fast and that delivers the optimal response to every perturbation, we
consider a closed toy model:

(5)

where X1 degradation is a proxy for partitioning at cell division, and the rate of making X2
is proportional to X1 because each plasmid copy encodes a gene for X2. We then use the

logarithmic gains6,14 H12 = −∂lnu/∂lnx2 and  to quantify the
percentage responses in rates to percentage changes in levels without specifying the exact
rate functions. Parameter H12 is similar to a Hill coefficient of inhibition, and H22
determines how X2 affects its own rates, increasing when it is negatively auto-regulated and
decreasing when it is degraded by saturated enzymes. The ratio H12/H22 is thus a total gain,
corresponding to the eventual percentage response in u to a percentage change in x1. With τ2
as the average lifetime of X2 molecules, stationary fluctuation-dissipation
approximations6,15 (linearizing responses, SI) then give:

(6)

where the limit holds for all Hij and τi (SI). This reflects a classic trade-off in control theory:
higher total gain suppresses spontaneous fluctuations in X1 but amplifies the transmitted
fluctuations from X2 to X1. Numerical analysis confirms that even a Hill-type inhibition
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function u can get close to the limit (not shown), and thus that direct inhibition can do
almost as well as a control demon. However, the parameter requirements can be extreme:

the signal molecules must be very short-lived, and the optimal gain 
may be so high that introducing any delays or ‘extrinsic’ fluctuations6,16 would destabilize
the dynamics. Regardless of the inhibition control network, plasmids thus need to express
inhibitors at extraordinarily high rates, and generate strongly nonlinear feedback responses
without introducing signaling cascades. Most plasmids indeed take these strategies to the
extreme, for example transcribing control genes tens of thousands of times per cell cycle
using several gene copies and some of the strongest promoters known. Some plasmids also
eliminate many of the cascade steps inherent in gene expression, using small regulatory
RNAs, and still create highly nonlinear responses using proofreading-type mechanisms (Fig.
3, left). Others partially avoid indirect control by ensuring that the plasmid copies
themselves prevent each others’ replication (Fig. 3, right), or suppress noise without closing
control loops17,18 by changing the Poisson nature of the X1 and X2 chemical events (Eq.
(1)). Though such schemes may have limited effects on variances11, some plasmids seem to
take advantage of them5.

Outlook
Several recent studies have generalized control-theoretic notions19,20 or applied them to
biology21,22. Others have demonstrated physical limits on the accuracy of cellular
signaling13,23,24,25, for example using fluctuation-dissipation approximations to predict
estimation errors associated with a constant number of diffusing molecules hitting a
biological sensor26. Interestingly, the latter show that the minimal relative error decreases
with the square root of the number of events, regardless of detection mechanism. Some
studies have also analyzed the information transfer capacity of open-loop molecular
systems25, or extracted valuable insights from Gaussian small-noise approximations. Here
we extend these works by developing exact mathematical methods for arbitrarily complex
and nonlinear real-time feedback control of a dynamic process of noisy synthesis and
degradation. In such systems, the minimal error decreases with the quartic root of the integer
number of signaling events, making a decent job 16 times harder than a half-decent job. This
perhaps explains why there is so much biochemical noise – correcting it would just be too
costly – but also constrains other aspects of life in the cell. For example, the noise levels
may increase or decrease along signaling cascades, depending on the kinetic details at each
step, but information about upstream states is always progressively and irreversibly lost.
Though it is tempting to believe that large reaction networks are capable of almost anything
if the rates are suitably nonlinear, the opposite perspective may thus be more appropriate:
having more steps where one component affects the rates of another creates more
opportunities for losing information and fundamentally prevents more types of behaviors.
While awaiting the detailed models that predict what single cells actually do – which require
every probabilistic chemical step to be well characterized – fusing control and information
theory with stochastic kinetics thus provides a useful starting point: predicting what cells
cannot do.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of optimal control networks and information loss
Biological networks can be overwhelmingly complex, with numerous feedback loops and
signaling steps. Predictions about noise then rely on quantitative estimates for how every
probabilistic reaction rate responds to every type of perturbation. To investigate bounds on
behavior, most of the network is here replaced by a ‘control demon’ representing a
controller that is optimized over all possible network topologies, rates and mechanisms. The
bounds are then calculated in terms of the few specified features.
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Figure 2. Hard limits on standard deviations
(left) Intrinsic noise (Eq. (1)). The lower limit on the relative standard deviation normalized
by that of a Poisson distribution, as a function of the ratio N2/N1. Blue curve corresponds to
reaction scheme (1), and red to the autocatalytic scheme described above Eq. (5). The
quartic root is the strongest relative response along either curve, while at low relative
signaling frequencies the limit is an even more damped function of N2/N1. (Left, inset) The
same lower limit for an average of 100 X1 molecules, as a function of N2. (Right) Extrinsic
noise. X1 is made at rate x3u, where X3 is born with constant probability and decays
exponentially with rate 1/τ3, while intrinsic birth and death noise in X1 is ignored. For
τ3≪τ1 or τ3≫τ1, the quartic root asymptotic still applies, essentially because the process
mimics a one-variable random process in both cases. At intermediate time-scales the N2
dependence is less strict and τ3=τ1 produces an asymptotic power law exponent of 3/8 rather
than ¼, partly supporting previous6,16 conclusions that extrinsic noise is slightly easier to
suppress. However, many actual control systems may find intermediately slow noise the
hardest to eliminate and any predictions about suppressing extrinsic noise will depend on the
properties of that noise. The predicted extrinsic noise limit is also a conservative estimate,
and the actual magnitude of the noise limit may be slightly higher (SI).

Lestas et al. Page 11

Nature. Author manuscript; available in PMC 2011 March 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Plasmid replication control
(Left) Plasmid ColE1 expresses an inhibitor that prevents replication, similarly to the self-
replication model in the main text with X1 as plasmid and X2 as inhibitor. Because plasmids
are under selection for noise suppression the theory predicts it must maximize expression
rates and minimize the length of signaling cascades while still achieving ‘cooperative’
nonlinear effects in the control loop. ColE1 indeed expresses a short-lived anti-sense RNA
inhibitor (RNA I) tens of thousands of times per cell cycle (~10Hz), that directly and
irreversibly blocks the maturation of a constitutively synthesized sense-RNA replication pre-
primer (RNA II)5 – eliminating both the translation step and binding and unbinding to genes
and making it energetically and mechanistically possible to produce inhibitors at such high
rates. ColE1 could also create strongly nonlinear control kinetics by exploiting kinetic
proofreading in RNA II elongation5,31. Many unrelated plasmids similarly express anti-
sense inhibitors at high rates, avoid cascades, and use multistep inhibition kinetics. (Right)
Plasmids such as P1, F, and pSC101 use ‘handcuffing’ mechanisms, where repeated DNA
sequences (iterons) bind each other and prevent replication32. This can achieve similar
homeostatic dynamics as monomer-dimer equilibria where a higher fraction of molecules
are in dimer form at higher abundance. Using DNA itself as inhibitor this could eliminate
the need for indirect signaling altogether, but because the mechanisms seem incapable of
strongly nonlinear corrections32, most such plasmids use additional control systems that go
through gene expression and thus are subject to information loss. Plasmids also commonly
use counteracting loops, where replication inhibitors also auto-inhibit their own synthesis – a
counter-intuitive strategy that in fact can improve control greatly (increasing H22 for a given
high H21 in Eq. (4)).
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